

Multiplexed High-Content Screening of Chemicals in Daphnia magna

Stockholm University Cedric Abele¹, Amira Perez¹, Paula Pierozan¹, Erik Nylander¹, Magnus Breitholtz², Oskar Karlsson¹

¹Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, 114 18 Stockholm, Sweden ²Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden

1 Introduction

A globally growing economy and developing society demand large amounts of chemicals with specific physico-chemical properties. This requires efficient testing of novel chemicals. High content-screening (HCS) describes automated microscopic image acquisition with subsequent quantitative evaluation of multi-parametric data sets. In this project molecular fluorescence staining applied on aquatic organisms will be used to measure toxicological effects in vivo.

Fluorescence Staining

3 Method

- 1. Chemical exposure (dose response setup)
- 2. Subsequent staining with molecular dyes

Red fluorescence

Stain: SYTOX Deep Red Localization: Nucleic Acid End point: *Dead cell*

(ii) Asses effects of single, or multiple, chemicals and environmental samples.

Develope HCS workflows for

toxicological effect screening.

Aims

2

(i)

Understand toxic mechanisms in (iii) aquatic organisms.

Green fluorescence

- 3. Multiplexed image acquisition
- 4. Analysis of fluorescence intensity with ImageJ

Stain: DAPI Localization: Nucleic acid End point: cell counting

Stain: Calcein AM Localization: Cytoplasm

End point: *Living cell*/ esterase activity/membrane integrity

4 Preliminary data

OECD acute immobilisation

concentration (µg/L)	0	5	10	25	50	75	100	200
immobile after 24h	0	0	0	0	0	0	0	0

5 Conclusion

HCS allows...

- detection of adverse effects in living individual organisms
- earlier detection of effects (resulting in lethality)

Fig.2.: Calcein intensities after 24h exposure to Methoxychlor concentrations between 0 - 200 µg/l

Lower Calcein signal after higher exposure concentrations

simultaneous multi-parametric mechanistic characterization

6 Next Steps

- Optimizing the highthrouput workflow
- Finding applicable molecular stains
- Extend to organisms of other trophic levels (i.e. algae, zebrafish embryo)

cedric.abele@aces.su.se +46 8 16 2911 @CedricAbele

References:

Li, S.; Xia, M. Review of High-Content Screening Applications in Toxicology. Arch Toxicol 2019, 93 (12), 3387–3396. https://doi.org/10.1007/s00204-019-02593-5.

OECD. Test No. 202: Daphnia Sp. Acute Immobilisation Test; OECD Guidelines for the Testing of Chemicals, Section 2; OECD, 2004. https://doi.org/10.1787/9789264069947-en.

Teplova, V. V.; Andreeva-Kovalevskaya, Z. I.; Sineva, E. V.; Solonin, A. S. Quick Assessment of Cytotoxins Effect on Daphnia Magna Using in Vivo Fluorescence Microscopy. *Environmental Toxicology and Chemistry* **2010**, *29* (6), 1345–1348. https:// doi.org/10.1002/etc.169.

